Paradoxes and Inclosure

Marco Degano

Philosophical Logic 2025 8 December 2025

Readings

Suggested:

- ▶ Priest, G. (1994). The structure of the paradoxes of self-reference. *Mind*, 103(409), 25–34.
- ▶ Priest, G. (2010). Inclosures, vagueness, and self-reference.

Further:

- ▶ Bolander, T. (2024). Self-reference and paradox.
- ► Yablo, S. (1993). Paradox without self-reference.
- Yanofsky, N. S. (2003). A universal approach to self-referential paradoxes, incompleteness and fixed points. *Bulletin of Symbolic Logic*, 9(3), 362–386.
- ► Abramsky, S., & Zvesper, J. (2015). From Lawvere to Brandenburger-Keisler.
- ► The logic of quantum paradoxes, Samson Abramsky: https://www.youtube.com/watch?v=_wGu7ra0lHY

Outline

- 1. Canonical paradoxes
- 2. The Inclosure Schema
- 3. Responses

What counts as a self-reference paradox?

A working characterization:

- ightharpoonup A system S (language, theory, concept) contains resources to
 - encode or represent its own semantic or structural features, and
 apply some operation to the totality of objects bearers of such
 - apply some operation to the totality of objects bearers of such features,
 - 3. generating a contrast between *closure* inside the system and *transcendence* outside the system.
- ► The resulting argument yields an *inconsistent* or *limitative* outcome.

The Liar

Let λ be the sentence:

$$\lambda \equiv \neg \mathsf{T}('\lambda')$$

► If T obeys the (naive) T-schema:

$$\mathsf{T}('\varphi') \leftrightarrow \varphi$$

then:

$$\lambda \leftrightarrow \neg \lambda$$

▶ Hence λ is both true and not true (classically: contradiction).

Russell's paradox

In naive comprehension:

$$R = \{x : x \notin x\}$$

Then:

$$R \in R \leftrightarrow R \notin R$$

- ► The contradiction does not require semantic vocabulary.
- ▶ It is often read as motivating restriction of comprehension.

Burali-Forti

Let On be "the set of all ordinals". Define $\delta(X)$ as the least ordinal strictly greater than every member of X.

- ▶ Then $\delta(On)$ is an ordinal greater than all ordinals.
- ▶ So $\delta(On) \in On$ and $\delta(On) \notin On$.

Grelling-Nelson (Heterological)

Call a predicate *autological* iff it applies to itself, *heterological* otherwise. Let H(x) mean "x is heterological."

Now we ask: is H heterological?

$$H(H) \leftrightarrow \neg H(H)$$

Ramsey's two families

Ramsey (1925) distinguishes:

- ► **Group A:** "purely logical/mathematical" paradoxes (e.g., Russell, Burali-Forti),
- ► **Group B:** "language/meaning" paradoxes (e.g., Liar, heterological).

But:

- Semantic and syntactic notions can be coded arithmetically or set-theoretically.
- ► The vocabulary boundary between "mathematics" and "metalanguage" shifts.

Priest argues that a **structural criterion** is preferable to a vocabulary-based one.

Outline

- 1. Canonical paradoxes
- 2. The Inclosure Schema
- 3. Responses

From Russell to Inclosure

Priest's diagnosis: many self-referential paradoxes arise from a tension between

- ► Closure: the relevant construction stays *inside* a totality,
- ► **Transcendence:** the same construction *escapes* any admissible sub-totality.

Russell's Schema

Let φ be a predicate and assume:

- 1. **Existence:** $\Omega = \{x : \varphi(x)\}$ exists.
- 2. Transcendence: For all $X \subseteq \Omega$, $\delta(X) \notin X$.
- 3. Closure: For all $X \subseteq \Omega$, $\delta(X) \in \Omega$.

Then, for $X = \Omega$:

$$\delta(\Omega) \in \Omega$$
 and $\delta(\Omega) \notin \Omega$

$$\varphi(x) \equiv x \not\in x$$

$$\Omega = \{x: x \not\in x\} \quad \text{(Russell's set)}.$$

$$\delta(X) = X$$

The Inclosure Schema

The generalization adds a *qualification* θ :

- 1. $\Omega = \{x : \varphi(x)\}$ and $\theta(\Omega)$.
- 2. If $X \subseteq \Omega$ and $\theta(X)$ then:
 - Transcendence: $\delta(X) \notin X$.
 - Closure: $\delta(X) \in \Omega$.

Thus $X = \Omega$ yields the inclosure contradiction:

$$\delta(\Omega) \notin \Omega$$
 and $\delta(\Omega) \in \Omega$

We can use this to unify semantic, set-theoretic, definability, and even vagueness-based paradoxes.

Why the qualification θ matters

Many paradoxes require a restriction on admissible subcollections:

- "nameable sets of sentences",
- "tolerant steps in a sorites sequence",
- ▶ "epistemically accessible states" (in multi-agent variants).

Set theory (as inclosures)

In these classical set-theoretic cases, the admissibility condition is trivial:

$$\theta(X) \equiv \top \quad \text{for all } X \subseteq \Omega$$

That is, *every* subcollection of Ω is eligible for the schema.

► Russell:

$$\varphi(x) \equiv x \notin x$$
 $\Omega = \{x : x \notin x\}$ $\theta(X) \equiv \top$ $\delta(X) = X$

Then at $X = \Omega$:

$$\delta(\Omega) = \Omega \in \Omega$$
 and $\delta(\Omega) = \Omega \notin \Omega$

▶ Burali–Forti:

$$arphi(x) \equiv x \text{ is an ordinal} \qquad \Omega = \operatorname{On} \qquad \theta(X) \equiv \top \\ \delta(X) =$$

the least ordinal strictly greater than every member of X.

Then at $X = \Omega$:

$$\delta(\mathrm{On}) \in \mathrm{On} \ \ \mathsf{and} \ \ \delta(\mathrm{On}) \notin \mathrm{On}$$

Cantor's theorem (as diagonal argument)

There is no surjection $f: X \to \mathcal{P}(X)$. **Proof:** Assume for reductio that f is onto. We define the anti-diagonal set

$$C = \{x \in X : x \not\in f(x)\}$$

Since f is surjective, $\exists c \in X$ such that f(c) = C. Then

$$c \in C \leftrightarrow c \notin f(c) \leftrightarrow c \notin C$$

A contradiction. Hence no surjection $X \to \mathcal{P}(X)$ exists and

$$|X| < |\mathcal{P}(X)|$$

	$ x_1 $	x_2	x_3
x_1	1	Х	✓
x_2	1	X	✓
x_3	X	✓	1
C	Х	✓	Х

Cell (i, j) indicates $x_j \in f(x_i)$. Row C flips the diagonal condition $x_i \in f(x_i)$.

Cantor as an Inclosure

Fix a set
$$X$$
. Let $\Omega = \mathcal{P}(X)$ $\varphi(u) \equiv u \subseteq X$

$$\theta(S) \equiv \exists f: X \to \Omega \ (\operatorname{ran}(f) = S)$$

So the admissible $S \subseteq \Omega$ are exactly those *representable* as the range of some listing f.

Diagonal/escape operator. Given $\theta(S)$, choose a witness f with $\mathrm{ran}(f) = S$ and define

$$\delta(S) = \{ x \in X : x \notin f(x) \}$$

Transcendence. If $\theta(S)$ then $\delta(S) \notin S$. (Otherwise $\delta(S) = f(c)$ for some c, and $c \in \delta(S) \leftrightarrow c \notin \delta(S)$.)

Closure. For any $S \subseteq \Omega$ with $\theta(S)$, $\delta(S) \subseteq X$. Hence $\delta(S) \in \mathcal{P}(X) = \Omega$.

If we additionally assumed $\operatorname{ran}(f) = \Omega$ (i.e. f is surjective), then with $S = \Omega$: $\delta(\Omega) \notin \Omega$ and $\delta(\Omega) \in \Omega$. Thus no surjection $X \to \mathcal{P}(X)$ exists.

The Liar via inclosure

Let L be a language containing:

- ightharpoonup a unary truth predicate T(x) for codes of L-sentences, and
- ▶ a device for *naming* certain sets of sentences.

$$\Omega = \{ \varphi \in L : T(\varphi') \}$$

 $\theta(X) \equiv "X \subseteq \Omega$ and there is a name N_X in L that denotes X."

Given such N_X , let $\delta(X)$ be a sentence λ_X satisfying the condition:

$$\lambda_X \leftrightarrow \neg(\lambda_X' \in N_X)$$

Transcendence. Assume $\theta(X)$. If $\lambda_X \in X$, then $\lambda_X \in \Omega$, hence λ_X is true, so $\neg('\lambda_X' \in N_X)$ But N_X names X, so $'\lambda_X' \notin N_X$ iff $\lambda_X \notin X$. Thus $\lambda_X \notin X$.

Closure. From $\lambda_X \notin X$ and the correctness of the name N_X , we get $\neg('\lambda_X' \in N_X)$, hence λ_X is true, so $\lambda_X \in \Omega$.

Therefore, at $X=\Omega$: $\delta(\Omega)\notin\Omega$ and $\delta(\Omega)\in\Omega$

Sorites

We model a sorites series as a finite ordered sequence

$$A = \langle a_0, a_1, \dots, a_n \rangle$$

Successive items are "imperceptibly different". Let P be a vague predicate with $P(a_0)$ and $\neg P(a_n)$.

Tolerance: For each i < n: $P(a_i) \rightarrow P(a_{i+1})$

Totality: $\Omega = \{a_i \in A : P(a_i)\}$

Admissibility. Here θ encodes the "cut" assumption appropriate to sorites:

$$\theta(X) \equiv \exists k \le n \ (X = \{a_i : i < k\})$$

So the admissible X are exactly the (possibly empty) *initial segments* of A.

For $\theta(X)$, define $\delta(X)$ as the *first element of* A *not in* X:

$$\delta(X) = a_k$$
 where $k = \min\{i \le n : a_i \notin X\}$

Sorites

Transcendence. If $\theta(X)$, then by definition: $\delta(X) \notin X$.

Closure. If $X \subseteq \Omega$ and $\theta(X)$, then:

- ▶ if k = 0, $\delta(X) = a_0 \in \Omega$ since $P(a_0)$;
- ▶ if k > 0, then $a_{k-1} \in X \subseteq \Omega$, so $P(a_{k-1})$, hence by tolerance $P(a_k)$, i.e. $\delta(X) \in \Omega$.

Assuming $\theta(\Omega)$ (i.e. the P-items form an admissible cut), we obtain the inclosure contradiction at $X=\Omega$:

$$\delta(\Omega) \notin \Omega$$
 and $\delta(\Omega) \in \Omega$

Inclosure: paradox or limitation theorem?

The Inclosure Schema is a *conditional* result. Two standard readings.

Paradox reading: retain the strong assumptions (unrestricted totality, robust semantic/comprehension principles, etc.). The contradiction is *real*.

Limitation reading: treat the argument as a reductio. Conclude that *at least one* of the generating assumptions fails:

- ▶ full *Existence* of Ω ,
- ightharpoonup Admissibility $\theta(\Omega)$,
- \blacktriangleright availability/definability of the relevant *(diagonal) operator* δ ,
- ► the underlying *closure* principles.

Limits of the axiomatic ideal

A unifying meta-lesson (1931-1936):

- Gödel: sufficiently rich axiomatic theories of arithmetic are incomplete.
- ► **Tarski:** truth for arithmetic is not definable *within* arithmetic.
- ➤ **Turing:** the Halting problem is undecidable (no total decision procedure).
- ► Church: first-order validity is undecidable.

These results are paradigm cases of diagonal self-reference turning naive "totality/completeness" assumptions into contradiction, and thus into *limitation theorems*.

Gödel I as an inclosure structure

Totality.

$$\varphi(\sigma) \equiv \sigma$$
 is a true arithmetical sentence, $\Omega = \{\sigma : \varphi(\sigma)\}.$

Admissibility.

$$\theta(X) \; \equiv \; \begin{cases} X \subseteq \Omega, \\ X \text{ is the set of theorems of some r.e. theory } T_X \supseteq Q. \end{cases}$$

(So X is an *effective* and *sound* fragment of arithmetic truth.)

Diagonal. Given $\theta(X)$, let $\delta(X) = G_X$ be a diagonal sentence satisfying:

$$G_X \leftrightarrow \neg \operatorname{Prov}_{T_X}('G'_X)$$

This is the Gödel sentence *relative to* T_X .

Gödel I as an inclosure structure

Transcendence. If $\theta(X)$ and T_X is consistent, then

$$G_X \notin X$$
 (i.e. $T_X \nvdash G_X$)

Closure. If $\theta(X)$ (soundness), then G_X is true, hence

$$G_X \in \Omega$$
.

Thus $\delta(X)$ always *escapes* the admissible X while remaining inside the truth-totality Ω .

From the inclosure pattern to Gödel's limitation theorem The inclosure "limit step" would be:

$$X = \Omega$$
 with $\theta(\Omega)$

But $\theta(\Omega)$ would amount to:

- ► Effectivity: the set of all arithmetical truths is r.e.,
- ► Axiomatizability: there exists a single r.e. theory proving all arithmetical truths.
- ► Soundness: all its theorems are true.

If we assume this "ideal totality", then we obtain the inclosure contradiction:

$$\delta(\Omega) \notin \Omega$$
 and $\delta(\Omega) \in \Omega$

We block $\neg \theta(\Omega)$. So there is *no* consistent, r.e. theory extending Q whose theorems coincide with all arithmetical truths. Hence every such theory is incomplete.

Outline

- 1. Canonical paradoxes
- 2. The Inclosure Schema
- 3. Responses

What the arguments show

Many paradoxes are conditional:

Completeness/closure assumption $\Rightarrow \bot$

- ► The key assumptions are often:
 - unrestricted totalities,
 - 2. naive truth principles,
 - 3. global representability/completeness.

Type-theoretic and set-theoretic restriction

Classic strategy:

- ▶ Block Existence of the problematic totality Ω .
- ► E.g. ZFC avoids a set of all sets, a set of all ordinals, etc.

In Priest's terms: deny Clause (1) of Russell's Schema for the set-theoretic cases.

Tarskian hierarchy

Semantic strategy:

- ► Stratify truth predicates: T₀, T₁, . . .
- ▶ Disallow a single truth predicate applying to sentences containing it.

In Priest's terms: revise the principles used to establish Closure/Transcendence in semantic cases.

Kripkean fixed-point theories of truth

Another semantic strategy:

- ► Use partial or grounded truth assignments.
- Seek a least fixed point of a truth operator.

This can be seen as an approach to banishing certain naive contradictions.

Dialetheic approach

Priest's distinctive proposal:

- ► Keep the core principles leading to the contradiction.
- ► Reject Explosion by adopting a paraconsistent logic.
- Accept that certain limit objects/sentences are both true and false.